Alkali Metal Cation π -Interactions in Metalated and Nonmetalated Acetylenes: π -Bonded Lithiums in the X-ray Crystal Structures of [Li-C=C-SiMe₂-C₆H₄-OMe]₆ and [Li-O-CMe₂-C=C-H]₆ and Computational Studies

Bernd Goldfuss, Paul von Ragué Schleyer,* and Frank Hampel

Contribution from the Institut für Organische Chemie der Universität Erlangen-Nürnberg, Henkestrasse 42, D-91054 Erlangen, Germany

Received July 2, 1996. Revised Manuscript Received November 4, 1996[∞]

Abstract: The X-ray crystal structure of $[\text{Li}-\text{C}=\text{C}-\text{SiMe}_2-\text{C}_6\text{H}_4-\text{OMe}]_6$ (14)₆ features nearly symmetric π -interactions between the lithium ions and the acetylide anions $(\text{Li}_1-\text{C}_\beta = 2.353(9) \text{ Å}, \text{Li}_1-\text{C}_\alpha = 2.292(9) \text{ Å})$. These π -contacts are facilitated by the chelating *o*-anisyl methoxy groups $(\text{Li}_1-\text{C}_\alpha-\text{C}_\beta = 77.6(4)^\circ, \text{Li}_1-\text{O}_1 = 2.169(9)$ Å). The Li-C_{α} distances in the $(\text{LiC}_{\alpha})_6$ core of (14)₆ differ significantly $(\text{Li}_{1\alpha}-\text{C}_\alpha = 2.132(9) \text{ Å}, \text{Li}_{1b}-\text{C}_\alpha = 2.205(11) \text{ Å})$. This Li-C_{α} distance differentiation is unique in organolithium hexamers, and is due to Li(C=C-R) "side-on- π " and "end-on- σ " contacts, as is shown computationally in H-C=C-Li(LiH)₂ (20). A second X-ray crystal structure, $[\text{Li}-\text{O}-\text{CMe}_2-\text{C}=\text{C}-\text{H}]_6$ (22)₆, reveals electrostatic π -interactions between the lithiums in the (LiO)₆ core and the nonmetalated acetylene groups (Li₁-C₂ = 2.443(5) Å, Li₁-C₃ = 2.749(6) Å). These Li-C π -contacts shorten upon acetylene lithiation, as is shown computationally in Li-O-CH₂-C=C-(H/Li) (24-H/Li). Additional computations reveal that the π -interactions in (HC=C)M₂H (26-Li-Cs) complexes (modelling oligo- and polymeric M-C=C-R) are weak (only 0.7 kcal/mol for Li), but substantial in M⁺(H-C=C-H) (27-Li-Cs) species (20.2 kcal/mol for Li⁺). In 26-Li-Cs, the π -contacts increase the C=C bond lengths slightly (0.005 Å for Li) and lower the C=C stretching frequencies (33 cm⁻¹ for Li), they polarize charge density from C_{α} toward C_{β} and hence result in counterion-induced charge delocalizations. The degrees of π -interactions both in (26-Li-Cs) and in (27-Li-Cs) decrease with increasing size of the alkali cations.

Introduction

In 1976, Apeloig, Schleyer, Binkley, Pople, and Jorgensen discovered computationally that the dilithioacetylene monomer (Li_2C_2) prefers a double π -bridged over a linear structure:^{1a}

Electrostatic interactions are mainly responsible.^{1,2a} This paper is concerned with similar π -interactions both in polar alkali metal acetylides (π -M [M–C=C–R]) and in nonmetalated acetylenes (π -M [H–C=C–R]). Such π -interactions are clearly evident in the structures of alkali metal² acetylides when the

Scheme 1. Polymer Sheet Structure of the Alkali Metal Acetylides **1-Na-Rb** and **2-Na-Cs**^{*a*}

^{*a*} The increasing penetration of M-C=C-R layers with increasing size of M is shown.

M−C_α and M−C_β distances are similar,³ e.g., in the polymer sheet arrangements of M−C≡C−H (**1-Na-Rb**)⁴ and of M−C≡C−Me (**2-Na-Cs**)⁴⁻⁶ (Scheme 1, Table 1).

However, such metal π -contacts are not always significant; e.g., note the large $M-C_{\beta}$ separations (>3 Å) in the oligometric lithium acetylides: [(t-Bu-C=C-Li)₄(THF)₄] (3),⁷ [(t-Bu-

[®] Abstract published in Advance ACS Abstracts, January 1, 1997.
(1) (a) Apeloig, Y.; Schleyer, P. v. R.; Binkley, J. S.; Pople, J. A.; Jorgensen, W. L. Tetrahedron Lett. **1976**, 3923. (b) Schleyer, P. v. R. J. Phys. Chem. **1990**, 94, 5560. (c) Ritchie, J. P.; Bachrach, S. M. J. Am. Chem. Soc. **1987**, 109, 5909. (d) Jaworski, A.; Person, W. B.; Adamowicz, L.; Bartlett, R. J. Int. J. Quantum Chem. Symp. **1987**, 21, 613.

⁽²⁾ For reviews on structures of alkali metal organic compounds, see:
(a) Sapse, A.-M.; Schleyer, P. v. R., Eds. Lithium Chemistry, Wiley: New York, 1995. (b) Lambert, C.; Schleyer, P. v. R. Angew. Chem. 1994, 106, 1187; Angew. Chem., Int. Ed. Engl. 1994, 33, 1129. (c) Lambert, C.; Schleyer, P. v. R. Methoden Org. Chem. (Houben-Weyl), 4th ed.; 1952–, Bd. E19d, 1993, p1. (d) Weiss, E. Angew. Chem. 1993, 105, 1565; Angew. Chem., Int. Ed. Engl. 1991, 37, 47. (f) Schade, C.; Schleyer, P. v. R. Adv. Inorg. Chem. 1987, 27, 169. (g) Setzer, W. N.; Schleyer, P. v. R. Adv. Organomet. Chem. 1985, 24, 353. (h) Bock, H.; Ruppert, K.; Näther, C.; Havlas, Z.; Herrmann, H.-F.; Arad, C.; Göbel, I.; John, A.; Meuert, J.; Nick, S.; Rauschenbach, A.; Seitz, W.; Vaupel, T.; Solouki, B. Angew. Chem. 1992, 104, 564; Angew. Chem., Int. Ed. Engl. 1992, 31, 550.

⁽³⁾ For a discussion of π -interactions in alkaline earth metal acetylides see: Chang, C.-C.; Srinivas, B.; Wu, M.-L.; Chiang, W.-H.; Chiang, M. Y.; Hsiung, C.-S. *Organometallics* **1995**, *14*, 5150.

⁽⁴⁾ Weiss, E.; Plass, H. Chem. Ber. 1968, 101, 2947.

⁽⁵⁾ Pulham, R. J.; Weston, D. P. J. Chem. Res. (S) 1995, 406.

⁽⁶⁾ Pulham, R. J.; Weston, D. P.; Salvesen, T. A.; Thatcher, J. J. J. Chem. Res. (S) **1995**, 254.

C=C-Li)₁₂(THF)₄],⁷ [(Ph-C=C-Li)tmpda]₂ (**4**),⁸ and [(Ph-C=C-Li)₄(tmhda)_{4/2}] (**5**)⁹ (Table 1). In contrast, the short Be- C_{β} distances indicate π -interactions in [(Me-C=C)₂BeNMe₃]₂ (**6**) (Table 1).¹⁰

Moreover, the alkali cations in the heterometallic magnesiates $Li_2[(Ph-C\equiv C)_3Mg(tmeda)]_2$ (7),¹¹ Na₂[(t-Bu-C\equiv C)₃Mg(tmeda)]₂ (8),¹² and Na₂[(t-Bu-C\equiv C)₃Mg(pmdta)]₂ (9)¹² connect the acetylene moieties of the [Mg(C≡C-R)₃]⁻ fragments through π -contacts (Table 1). Analogous structures as in 7 to 9 result from replacement of M⁺ by EtMg⁺ in (Et)(Ph-C≡C)₃(Mg)₂ (tmeda)]₂(C₆H₆) (10).¹³ Similarly, the lithiums in [Me₃SiC (C≡C-t-Bu)₂Li]₂ (11)^{2g} as well as the magnesium ion in [(C₃HMe₄)₂Ti(C≡C-SiMe₃)₂][Mg(THF)CI] (12)¹⁴ are located between the arms of "tweezers" formed by the acetylene groups (Table 1).

How do electrostatic π -interactions affect the electronic structures in metal acetylides? The penetration of the alkali cations into the acetylide layers in **1-Na-Rb** and **2-Na-Cs** increases as the counterions become larger (Scheme 1).⁴ The IR ν -C=C stretching frequencies of **1-Na-Cs**, **2-Li-Cs**, and **13-**

(8) Schubert, B.; Weiss, E. Chem. Ber. 1983, 116, 3212.

(9) Schubert, B.; Weiss, E. Angew. Chem. 1983, 95, 499; Angew. Chem., Int. Ed. Engl. 1983, 22, 496.

- (10) Bell, N. A.; Nowell, I. W.; Shearer, H. M. M. J. Chem. Soc., Chem. Commun. 1982, 147.
 - (11) Schubert, B.; Weiss, E. Chem. Ber. 1984, 117, 366.
 - (12) Geissler, W.; Kopf, J.; Weiss, E.; Chem. Ber. 1989, 122, 1395.
 - (13) Viebrock, H.; Abeln, D.; Weiss, E. Z. Naturforsch. 1994, B49, 89.
 - (14) Troyanov, S.; Varga, V.; Mach, K. Organometallics 1993, 12, 2820.

Li-Cs decrease with increasing size of the alkali metal cations (Table 2).¹⁵ Negative charge delocalization from C_{α} to C_{β} is indicated both by the increased metal cation/acetylide interactions upon increased M–C=C–R layer penetration (see Scheme 1)⁴ and by the lower ν -C=C frequencies.¹⁵ However, an increase in ion size also gives rise to lower ν -C=C frequencies (see below).¹⁵ How can the effect of π -coordination be differentiated?

Alkali metal π -bonding to benzene ligands has been investigated extensively owing to its important role in biological ion channels.¹⁶ As "lithium-bonded"¹⁷ cyclopropanes emphasize the analogy to hydrogen-bonded cyclopropanes,^{17d,18} π -"lithium-bonded" acetylenes stress the analogy to π -hydrogen-bonded acetylenes.^{18a,19} The Li⁺²⁰ and LiH²¹ π -association energies of acetylene are appreciable and are even larger when the acetylenes are metalated.²² Notwithstanding, Li⁺ π -bonding has not been observed experimentally in X-ray crystal structures of homogeneous lithium acetylenes or in compounds with nonmetalated acetylene groups.²

For an assessment of electrostatic metal acetylene π -interactions,²³ we now report the X-ray crystal structures of lithiated (Li-C=C-SiMe₂-C₆H₄-OMe) and of nonlithiated (Li-O-CMe₂-C=C-H) acetylene moieties. Both exhibit π -bonded Li ions. High level computations reveal the structural, the energetic, and the ω -C=C vibrational consequences of alkali cation π -interactions in related metal acetylene models and assess the electronic effects of π -coordination.

Results and Discussion

Syntheses and X-Ray Crystal Structures of Homo-Lithium Acetylenes Featuring Electrostatic π -Interactions. Why is π -coordination not apparent in the structures of the oligomeric lithium acetylides 3, 4, and 5? This may be due to (a) insufficient energy gain upon π -bridging (see below), (b) the lower tendency of the smaller alkali metals to undergo multihapto coordination,^{2b,c,f} and (c) the competition between the substituents on the acetylene moieties and the lithium coordinating solvent (Scheme 2a).

⁽⁷⁾ Geissler, M.; Kopf, J.; Schubert, B.; Weiss, E.; Neugebauer, W.; Schleyer, P. v. R. Angew. Chem. **1987**, 99, 569; Angew. Chem., Int. Ed. Engl. **1987**, 26, 587.

⁽¹⁵⁾ Nast, R.; Gremm, J. Z. Anorg. Allgem. Chem. 1963, 325, 62.

^{(16) (}a) Mecozzi, S.; West, A. P., Jr.; Dougherty, D. A. J. Am. Chem. Soc. **1996**, 118, 2307. (b) Dougherty, D. A. Science **1996**, 271, 163. (c) Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. **1995**, 117, 4177. (d) Kumpf, R. A.; Dougherty, D. A. Science **1993**, 261, 1708.

^{(17) (}a) Sannigrahi, A. B.; Kar, T.; Niyogi, B. G.; Hobza, P.; Schleyer, P. v. R. *Chem. Rev.* **1990**, *90*, 1061. (b) Scheiner, S. In *Lithium Chemistry*; Sapse, A.-M., Schleyer, P. v. R., Eds.; Wiley: New York, 1995; p 67. (c) Kollman, P. A.; Liebman, J. F.; Allen, L. C. *J. Am. Chem. Soc.* **1970**, *92*, 1142. (d) Goldfuss, B.; Schleyer, P. v. R.; Hampel, F. J. Am. Chem. Soc. **1996**, *118*, 12183.

^{(18) (}a) Schleyer, P. v. R.; Trifan, D. S.; Bacskai, R. J. Am. Chem. Soc. **1958**, 80, 6691. (b) Joris, L.; Schleyer, P. v. R.; Gleiter, R. J. Am. Chem.
Soc. **1968**, 90, 327. (c) Andrews, A. M.; Hillig, K. W., II; Kuczkowski, R. L. J. Am. Chem. Soc. **1992**, 114, 6765. (d) Buxton, L. W.; Aldrich, P. D.;
Shea, J. A.; Legon, A. C.; Flygare, W. H. J. Chem. Phys. **1981**, 75, 2681.
(e) Legon, A. C.; Aldrich, P. D.; Flygare, W. H. J. Am. Chem. Soc. **1982**, 104, 1486. (f) Kukolich, S. G. J. Chem. Phys. **1983**, 78, 4832.

^{(19) (}a) Steiner, T.; Tamm, M.; Lutz, B.; Mass, J. v. d. *Chem. Commun.* **1996**, 1127. (b) Allen, F. H.; Howard, J. A. K.; Hoy, V. J.; Desiraju, G. R.; Reddy, D. S.; Wilson, C. C. *J. Am. Chem. Soc.* **1996**, *118*, 4081.

^{(20) (}a) Bene, J. E. D.; Frisch, M. J.; Raghavachari, K.; Pople, J. A.; Schleyer, P. v. R. *J. Phys. Chem.* **1983**, *87*, 73. (b) Dykstra, C. E.; Schaefer, H. F., III *J. Am. Chem. Soc.* **1978**, *100*, 1378.

^{(21) (}a) Houk, K. N.; Rondan, N. G.; Schleyer, P. v. R.; Kaufmann, E.; Clark, T. J. Am. Chem. Soc. **1985**, 107, 2821. (b) Plattner, D. A.; Li, Y.; Houk, K. N. In Modern Acetylene Chemistry; Stang, P. J., Diederich, F., Eds.; VCH: Weinheim, 1995; p 1.

⁽²²⁾ Klusener, P. A. A.; Hanekamp, J. C.; Brandsma, L.; Schleyer, P. v. R. J. Org. Chem. 1990, 55, 1311.

⁽²³⁾ More covalent contributions are apparent in transition metal π -acetylene complexes, e.g.: (a) Chi, K.-M.; Lin, C.-T.; Peng, S.-M.; Lee, G.-H. *Organometallics* **1996**, *15*, 2660. (b) Mingos, D. M. P.; Yau, J.; Menzer, S.; Williams, D. J. Angew. Chem. **1995**, *107*, 2045; Angew. Chem., Int. Ed. Engl. **1995**, *34*, 1894.

Table 1. M-C_{α}, M-C_{β}, and C_{α}-C_{β} Distances (Å) in Alkali and Alkaline Earth Metal Acetylenes

	$M=C_{\alpha}{}^{a}$	$M-C_{\beta}$	$C_{\alpha}-C_{\beta}$
$M-C=C-H^b$			
M = Na, 1-Na	2.49(5)/2.7	3.0	1.17(6)
M = K, 1-K	2.87/3.0	3.3	1.2
M = Rb, 1-Rb	2.98/3.2	3.4	1.2
$M-C \equiv C-Me^b$			
M = Na, 2-Na	2.37(15)/2.7	2.8	1.09(20)
M = K, 2-K	2.55(5)/3.0	3.1	1.19(6)
$(t-Bu-C=C-Li)_4(THF)_4, 3^c$	2.19	>3.1	1.20
$[(Ph-C=C-Li)tmpda]_2, 4^d$	2.13/2.16	3.08	1.24
$[(Ph-C=C-Li)_4(tmhda)_2], 5^e$	2.20	>3.1	2.20
$[(MeC \equiv C)_2 BeNMe_3]_2, 6^{f}$	1.763/2.042	2.538	
$Li_2[(PhC \equiv C)_3Mg(tmeda)]_2, 7^g$	2.32	2.48	1.22
Na ₂ [(t-Bu-C=C) ₃ Mg(tmeda)] ₂ , $8^{h,i}$	2.571(3)	2.974(3)	1.200(4)
$Na_2[(t-Bu-C=C)_3Mg(pmdta)]_2, 9^{h,i}$	2.590(5)	2.900(5)	118.5(7)
$[(Et)(PhC \equiv C)_3(Mg)_2(tmeda)]_2(C_6H_6), 10^{i,j}$	2.265(4)	2.678(4)	1.220(6)
$[Me_3SiC(C = C - t - Bu)_2Li]_2, 11^k$	2.11	2.34	
$[(C_5HMe_4)_2Ti(C \equiv C - Si]Me_3)_2][Mg(THF)Cl], 12^l$	2.269(8)	2.456(9)	1.22(1)
$[Li-C=C-SiMe_2-C_6H_4OMe]_6, (14)_6^m$	2.132(9)/2.205(11)/ 2.292(9)	2.353(9)	1.217(6)

^{*a*} The shorter σ -(M–C_{α}) and the longer π -(M–C_{α}) distances are given. ^{*b*} Reference 4. ^{*c*} Reference 7. ^{*d*} Reference 8. ^{*e*} Reference 9. ^{*f*} Reference 10. ^{*s*} Reference 11. ^{*h*} Reference 12. ^{*i*} Selected bond distances. ^{*j*} Reference 13. ^{*k*} Reference 2g. ^{*l*} Reference 14. ^{*m*} See Figure 1.

Table 2. Experimental ν -C=C Frequencies (cm⁻¹) of Alkali Metal Acetylides (see Scheme 1 for the Structures)

М	$M-C \equiv C-H^a 1,$ 1-Li-Cs	$M-C \equiv C-Me^a 2,$ 2-Li-Cs	M−C≡C−Ph ^{<i>a</i>} 13, 13-Li-Cs	14
Н	1974	2124	2111	2020 ^b
Li		2053^{c}	2036^{d}	1980 ^c
Na	1867^{e}	2032^{c}	2018^{c}	
Κ	1858^{c}	2023^{c}	2000^{c}	
Rb	1851 ^c	2020^{c}	1990 ^c	
Cs	1838 ^c	2012^{c}	1990^{d}	

^a Reference 15. ^b Neat. ^c Nujol mull. ^d KBr disk. ^e Reference 46.

Scheme 2

Recent computations show that solvation by H₂O molecules has sufficient energy to overcome the π -interactions between lithiums and the triple bonds in (**1-Li**)₂.²⁴

The goal of this research, to realize a homogenous lithium acetylide exhibiting $\text{Li}-(\text{C}_{\alpha} \equiv \text{C}_{\beta}) \pi$ -interactions, as in (1-Li)₂, without competing external solvent interactions, led us to examine lithium (*o*-anisyl)dimethylsilylacetylide, $\text{Li}-\text{C} \equiv \text{C}-\text{SiMe}_2-\text{C}_6\text{H}_4-\text{OMe}$ (14). The *o*-anisyl methoxy group chelation in 14 should result in short $\text{Li}-\text{C}_{\beta}$ contacts (Scheme 2b).

Indeed, the X-ray crystal structure of hexameric **14** (crystallographic S_6 symmetry) shows such nearly symmetric π -interactions; note the short Li–C_{β} distances in Figure 1 and Table 1.

Figure 1. X-ray crystal structure of $[\text{Li}-\text{C}=\text{C}-\text{SiMe}_2-\text{C}_6\text{H}_4-\text{OMe}]_6$ (**14**)₆. Hydrogen atoms are omitted. Selected distances (Å) and angles (deg): $C_{\alpha}-C_{\beta}$, 1.217(6); Li_1-C_{α} , 2.292(9); Li_1-C_{β} , 2.353(9); Li_1-O_1 , 2.169(9); $\text{Li}_{1a}-C_{\alpha}$, 2.132(9); $\text{Li}_{1b}-C_{\alpha}$, 2.205(11); $\text{Li}_1-C_{\alpha}-C_{\beta}$, 77.6(4); $\text{Li}_{1a}-C_{\alpha}-C_{\beta}$, 152.0(5); $\text{Li}_{1b}-C_{\alpha}-C_{\beta}$, 127.8(5).

The lithium ions (Li₁) in (14)₆ are coordinated 5-fold by three C_{α} carbon atoms, by the oxygen atoms of the *o*-anisyl methoxy groups (Li₁-O₁: 2.169(9) Å), and by the C_{β} atoms of the acetylene moieties (Li₁- C_{β} : 2.353(9) Å, Table 1). The C_{α} - C_{β} -Si₁ arrangements (177.8(5)°) are nearly linear. As the $C_{\alpha} \equiv C_{\beta}$ -R fragments tilt toward Li₁, the Li_(1,1a,1b)- C_{α} - C_{β} angles differ strongly; Li₁- C_{α} - C_{β} (77.6(4)°) is much smaller than Li_{1a}- C_{α} - C_{β} (152.0(5)°) and the Li_{1b}- C_{α} - C_{β} angle is intermediate (127.8(5)°). The $C_{\alpha} \equiv C_{\beta}$ distances (1.217(6) Å) in (14)₆ are increased relative to acetylene 1 (exp, 1.20 Å;²⁵ calc, 1.199 Å; see below). The methyl groups (C₅) on O₁ bend 15° out of the plane of the aryl rings (torsion angle C_5 - O_1 - C_{66} - $C_{62} = -165°$).

Comparisons of $(14)_6$ and the organolithum hexamers [(c- $\{C_6H_{11}\}Li)_6$ (15)₆·(C₆H₆)₂],²⁶ [c- $\{(Me_2C)_2CH\}CH_2Li]_6$ (16)₆,²⁷ [Me₃SiCH₂Li]₆ (17)₆,²⁸ (n-BuLi)₆ (18)₆,²⁹ and (i-PrLi)₆ (19)₆³⁰ are instructive. The (LiC_{α})₆ cores in all these hexameric

⁽²⁵⁾ March, J. Advanced Organic Chemistry, Wiley: New York, 1985 and references therein.

 ⁽²⁶⁾ Zerger, R.; Rhine, W.; Stucky, G. J. Am. Chem. Soc. 1974, 96, 6048.
 (27) Maercker, A.; Basata, M.; Buchmeier, W.; Engelen, B. Chem. Ber. 1984, 117, 2547.

⁽²⁸⁾ Tecle, B.; Rahman, A. F. M. M.; Oliver, J. P. J. Organomet. Chem. **1986**, *317*, 267.

Table 3. Bond Distances (Å) and Angles (deg) of the $(\text{LiC}_{\alpha})_6$ Cores in Hexameric Organolithium Compounds (Scheme 3)

	$Li_1 - Li_{1a}$	$Li_{1a}-Li_{1b}$	$Li_1 - Li_{1b}$	$Li_1-Li_{1b}-Li_{1a}$	α^{g}	$Li_1 - C_{\alpha}$	$Li_{1a}-C_{\alpha}$	$Li_{1b}C_{\alpha}$
$[(c-\{C_6H_{11}\}Li)_6 (15)_6 \cdot (C_6H_6)_2]^a$	2.968	2.397	2.397	74.4	70.3	2.184^{h}	2.184^{h}	2.300
$[c-{(Me_2C)_2CH}CH_2Li]_6, (16)_6^b$	2.976	2.462	2.462	76.5	72.2	2.159	2.123	2.297
$[Me_3SiCH_2Li]_6, (17)_6^c$	3.18	2.45	2.45	80.9	79.5	2.20^{h}	2.20^{h}	2.28
$(n-BuLi)_6, (18)_6^d$	2.939	2.429	2.429	74.5	70.3	2.159^{h}	2.159^{h}	2.270
$(i-PrLi)_6, (19)_6^e$	2.959	2.395	2.395	76.3	72.5	2.180^{h}	2.180^{h}	2.308
(14) ₆ ^f	3.700	2.794	2.794	82.9	80.5	2.292	2.132	2.205

^{*a*} Reference 26. ^{*b*} Reference 27. ^{*c*} Reference 28. ^{*d*} Reference 29. ^{*e*} Reference 30. ^{*f*} See Figure 1. ^{*g*} Back to seat angle α of the Li₆ chair, Scheme 3b. ^{*h*} Average values of similar distances, which do not differ in more than 0.04 Å; see reference.

organolithium compounds are formed by two stacked $(LiC_{\alpha})_3$ rings (Scheme 3a). Folded Li_6 chairs are apparent in the $(LiC_{\alpha})_6$ units (Scheme 3b). The C_{α} atoms cap the Li_3 faces, with one long (Li_1-Li_{1a}) and two short (Li_1-Li_{1b}) distances (Scheme 3c, Table 3).

Relative to $(15)_6$, $(16)_6$, $(17)_6$, $(18)_6$, and $(19)_6$, the lithium acetylide $(14)_6$ exhibits a Li₃ triangle with unusual long Li–Li distances and a rather flat Li₆ chair (large "back-to-seat" angle α , Scheme 3b, Table 3). In $(15)_6$ to $(19)_6$, the distances of the C_{α} caps to Li₁ and Li_{1a} are short (Scheme 3c, Table 3). Longer Li_{1b}-C_{α} distances connect the two stacked (LiC_{α})₃ rings (Scheme 3a, Table 3). In $(14)_6$, however, the Li₁-C_{α} distances are significantly longer than the Li_{1b}-C_{α} bonds between the (LiC_{α})₃ subunits (Table 3).

Our computational model for $(14)_6$, H–C=C–Li(LiH)₂ (20) (Figure 2), reveals that energy gain upon bending of the $C_{\alpha} \equiv C_{\beta}$ –H fragment is low (1.36 kcal/mol in 20, Figure 2) but that the π -coordination, which results from the tilt of the $C_{\alpha} \equiv C_{\beta}$ –R units, gives rise to the unusual Li–C_{α} distance differentiations in (14)₆: Shorter σ -Li–C_{α} (2.027 Å) and longer π -Li–C_{α} (2.083 Å) distances are apparent in 20-C_s relative to 20-C_{2v} Li–C_{α} (2.040 Å, Figure 2). This is due to short "end-on- σ " and long "side-on- π " C_{α} contacts of the Li ions, which coordinate to the σ - and the π -regions of the acetylide ions (Scheme 4, Figure 3).^{2c,b}

Deprotonation or metalation increases the affinity of acetylene groups toward metal ion π -coordination (Figure 4),²² but the Li⁺ and LiH π -interaction energies of nonmetalated acetylene are relatively large (22.2 kcal/mol for π -Li⁺(H–C=C–H); see below).^{22,31} The short contacts between lithiums and the carbon atoms in lithium pinacolone enolate [Li–O–C(t-Bu)=CH₂]₆, (**21**)₆ document π -interactions with Li ions in the (LiO)₆ cluster (Scheme 5).³² Are analogous electrostatic π -interactions³³ with (nonmetalated) acetylene moieties possible? To provide an answer, we synthesized and crystallized the lithium acetylene alkoxide Li–O–CMe₂C=C–H (**22**). The X-ray crystal analysis reveals a hexameric aggregate [Li–O–CMe₂–C=C–H]₆ (**22**)₆ with crystallographic S₆ symmetry (Figure 5).

The lithium centers Li₁ in $(22)_6$ exhibit short contacts to the organic moieties (Li₁-C₁ = 2.687(5) Å, Li₁-C₂ = 2.443(5)

Figure 2. (a) $H-C \equiv C-\text{Li}(\text{LiH})_2$ ($C_{2\nu}$, **20-C**_{2v}): B3LYP/6-311+G** optimized geometry, total energy -100.613 35 au; B3LYP/6-31G* zeropoint energy 20.13 kcal/mol (NIMAG = 1). (b) $H-C \equiv C-\text{Li}(\text{LiH})_2$ (C_s , **20-C**_s): B3LYP/6-311+G** optimized geometry, total energy -100.61590 au; B3LYP/6-31G* zero-point energy 20.37 kcal/mol (NIMAG = 0); π -coordination energy relative to **20-C**_{2v} = 1.36 kcal/mol.

Scheme 3

Å, and $\text{Li}_1-\text{C}_3 = 2.749(6)$ Å (Scheme 5, Table 4). This suggests similar electrostatic interactions as in (21)₆ and in [Li– O–C(Me)–(c-CHCH₂CH₂)₂]₆ (23)₆ (Scheme 5).^{17d} This interpretation also is supported by the tilt of the O₁–C₁ moieties toward Li₁ (Li₁–O₁–C₁ = 105.3(2)°, Li_{1a}–O₁–C₁ = 130.8(2)°, Li_{1a}–O₁–C₁ = 134.2(2)°; Table 4) and the coplanarity of the O₁–Li₁ and C₁–C₂ bonds (Li₁–O₁–C₁–C₂ dihedral angle = 10.4°, Figure 5).³⁴ The differences in the Li_(1,1a,1b)-O₁ distances are remarkable: Li₁–O₁ (1.955(5) Å) are longer than Li_{1a}–O₁

⁽²⁹⁾ Kottke, T.; Stalke, D. Angew. Chem. 1993, 105, 619; Angew. Chem., Int. Ed. Engl. 1993, 32, 580.

⁽³⁰⁾ Siemeling, U.; Redecker, T.; Neumann, B.; Stammler, H.-G. J. Am. Chem. Soc. 1994, 116, 5507.

⁽³¹⁾ For electrostatic potential computations of $H-C \equiv C-H$ and $F-C \equiv C-H$, see: Clark, D. T.; Adams, D. B. *Tetrahedron* **1973**, *29*, 1887.

^{(32) (}a) Williard, P. G.; Carpenter, G. P. J. Am. Chem. Soc. **1985**, 107, 3345. (b) Williard, P. G.; Carpenter, G. P. J. Am. Chem. Soc. **1986**, 108, 462.

⁽³³⁾ For a discussion of electrostatic Li–C π -interactions in lithium aryls see: Ruhlandt-Senge, K.; Ellison, J. J.; Wehmschulte, R. J.; Pauer, F.; Power, P. P. J. Am. Chem. Soc. **1993**, 115, 11353

⁽³⁴⁾ Probably due to steric hindrance, ideal syn-periplanar arrangements (Li₁-O₁-C₁-C₂ = 0°) are avoided.

Scheme 4. Differentiation of Li_1-C_{α} and $Li_{1a}-C_{\alpha}$ Bonds in the X-ray Crystal Structure of $(14)_{6^a}$

^{*a*} The R-C=C tilt results in "side-on- π " (Li₁) in addition to the "end-to- σ " (Li_{1a}) coordination. See also Figure 3.

Figure 3. (a) MO contour plots (RHF/6-31+G*) of H–C≡C–Li-(LiH)₂ ($C_{2\nu}$, **20-C**_{2v}) reflecting σ - ("in-plane" HOMO-1) and π - ("inplane" HOMO) components of the Li–C bonds. (b) MO contour plots (RHF/6-31+G*) of H–C≡C–Li(LiH)₂ (C_s , **20-C**_s) reflecting σ - ("inplane" HOMO-1) and π - ("in-plane" HOMO) components of the Li–C bonds.

(1.877(5) Å) or $Li_{1b}-O_1$ (1.923(5) Å). Like the long Li_1-C_{α} bonds in (14)₆, the long Li_1-O_1 distances in (22)₆ are obviously due to the "side on p"-coordinated O_1 lone pairs.

To assess the energetics of Li π -bonding in the X-ray crystal structure of (22)₆, monomeric Li $-O-CH_2-C\equiv C-H$ models were computed without (24-H, Figure 6a) and with (24-H-coord, Figure 6b) Li (H $-C\equiv C$) π -contacts (Scheme 6). Both structures are minima. The Li (H $-C\equiv C$) π -interaction is rather weak, and 24-H-coord is only 0.64 kcal/mol more stable than 24-H-coord (Figure 6, a and b). As in the X-ray crystal structure (22)₆, the π -interactions in 24-H-coord are clearly apparent from the short Li(C $\equiv C$) distances (2.241 and 2.478 Å, Figure 6b). Lithiation of the acetylene moiety in 24-H-coord (Figure 4)

and results in shorter Li(C=C) π -contacts (2.115 and 2.290 Å, Figure 6c). Moreover, no minimum corresponding to **24-H** (with X = Li) could be optimized at B3LYP/6-31G*; only **24-Li-coord** resulted.

Structural, Energetic, and Vibrational Effects of π -Interactions in Alkali Metal Acetylides. Similar C_{α} -M and C_{β} -M distances (see above) and lower C=C stretching frequencies are important indicators of π -bonding in polar metal acetylides. Are energetic, structural, and vibrational π -interaction criteria related with the charge distributions in alkali metal acetylides M-C=C-H (1-Li-Cs, Table 5)? The (HC=C)M₂H complexes correspond to the X-ray crystal structures of 4 and of 6 without (25-Li-Cs, $C_{2\nu}$) and with (26-Li-Cs, C_s) π -interactions (Table 6). Alkali metal cation π -coordinations are apparent in the cationic acetylene complexes 27-Li-Cs (Table 7).

All C_s structures **26-Li-Cs** with π -interactions are slightly more stable (0.73 kcal/mol (Li) to 0.07 kcal/mol (Cs)) than their $C_{2\nu}$ counterparts without π -contacts **25-Li-Cs** (Table 6). The $C_s-C_{2\nu}$ energy differences, ΔE , and hence the degree of π -interaction, decrease with increasing ion sizes (increasing distances r between M⁺ and the C=C centers). This also is apparent with the π -coordination energies E_{coord} of **27-Li-Cs** (Table 7); these correlate with $1/r^3$ (Figure 7).³⁵ Although **25-**Li and **26-Li** have the largest energy difference, **25-Li** is the only minimum among the $C_{2\nu}$ species, **25-Li-Cs** (Table 6).³⁶

The C=C distances elongate as the metal ions become larger in **25-Li** to **25-Cs**, e.g., from 1.225 Å to 1.234 Å, as well as from 1.224 Å in **1-Li** to 1.231 Å ion **1-Cs**, reflecting the σ -effects of the cations in these π -bonding free structures (Tables 5 and 6, Figure 8). The π -interactions in **27-Li** to **27-Cs** (C=C = 1.205 and 1.201 Å) result only in small C=C lengthenings relative to **1** (1.199 Å) (Table 7, Figure 8). Similarly, the π -interactions in **26-Li** to **26-Cs** (C=C = 1.230 and 1.234 Å) elongate the C=C distances only slightly relative to the corresponding **25-Li-Cs** structures. The C=C lengthenings due to π -interactions (**25-Li-Cs** vs **26-Li-Cs**) are the greatest the smaller the cations (Figure 8). That the C_{α}=C_{β} distance is a poor criterion for π -interactions has been noted.^{3,37}

The σ -coordinated cations shift the harmonic ω -C=C stretching frequencies to lower values as the metals become larger: from **25-Li** (2007 cm⁻¹) to **25-Cs** (1941 cm⁻¹) and from **1-Li** (2014 cm⁻¹) to **1-Cs** (1955 cm⁻¹, Tables 5 and 6, Figure 9). The π -interactions in **27-Li** to **27-Cs** (ω -C=C = 2034 and 2053 cm⁻¹) lower the ω -C=C frequencies relative to **1** (ω -C=C =

⁽³⁵⁾ Whereas in alkali metal cation cyclopropane edge complexes E_{coord} depends on $1/r^{2.5}$ (ref 17d), for benzene a $1/r^n$ ($n \le 2$) correlation was found (ref 16b).

⁽³⁶⁾ An earlier computational study using the CCSD/DZP level without diffuse functions describes (HCC)Li₂H as a C_{2v} transition structure: Bolton, E. E.; Laidig, W. D.; Schleyer, P. v. R.; Schaefer, H. F., III *J. Am. Chem. Soc.* **1994**, *116*, 9602.

⁽³⁷⁾ Tecle, B.; Ilsley, H.; Oliver, J. P. Inorg. Chem. 1981, 20, 2335.

Figure 4. (a-c) Electrostatic potential maps (RHF/6-31+G*) of H–C≡C–H ($D_{\infty h}$, 1), H–C≡C⁻ ($C_{\infty v}$, 1-anion), and Li–C≡C–H ($C_{\infty v}$, 1-Li). The negative values (kcal/mol) reflect the cation coordination affinities of the systems.

Figure 5. X-ray crystal structure of $[Li-O-CMe_2-C≡C-H]_6$ (22)₆. The methyl groups C₅ are disordered. Hydrogen atoms are omitted except the acetylenic hydrogen atom H₃. Selected distances (Å) and angles (deg): C₁-C₂, 1.486(4); C₂-C₃, 1.172(5); Li₁-C₁, 2.687(5); Li₁-C₂, 2.443(5); Li₁-C₃, 2.749(6); Li₁-O₁, 1.955(5); Li₁_a-O₁, 1.878(5); Li₁_b-O₁, 1.932(5); Li₁-O₁-C₁, 105.3(2); Li₁_a-O₁-C₁, 130.8(2); Li₁_b-O₁-C₁, 134.2(2).

Scheme 5. Electrostatic Interactions in Hexameric Lithium Alkoxide Clusters

2062 cm⁻¹; Table 7, Figure 9). Similarly, the π -interactions in **26-Li** (1974 cm⁻¹) to **26-Cs** (1937 cm⁻¹) result in lower ω -C=C stretching frequencies than in the corresponding **25-Li-Cs** structures. The relative reduction of ω -C=C stretching frequencies (**25-Li-Cs** vs **26-Li-Cs**) is the stronger the smaller the

Table 4. Selected Bond Distances (Å) and Angles (deg) for $[\text{Li}-\text{O}-\text{C}(\text{t}-\text{Bu})=\text{CH}_2]_6$, (**21**)₆,^{*a*} $[\text{Li}-\text{O}-\text{CMe}_2-\text{C}=\text{C}-\text{H})]_6$ (**22**)₆^{*b*} and $[\text{Li}-\text{O}-\text{C}(\text{Me})-(\text{c}-\text{CHCH}_2\text{CH}_2)_2]_6$ (**23**)₆^{*c*} (Scheme 5)

.) (0 (-)0 (/
$(21)_6^{a,d}$	$(22)_6^b$	$(23)_6^c$
1.976(9)	1.955(5)	1.937(3)
1.869(9)	1.877(5)	1.881(3)
1.954(9)	1.923(5)	1.926(3)
88.0(9)	105.3(2)	105.6(1)
140.0(4)	130.8(2)	132.6(1)
132.9(4)	132.4(2)	135.1(1)
2.349(9)	2.687(5)	2.680(3)
2.420(8), 2.53 ^e	2.443(5)	2.615(3)
	2.749(5)	2.644(3)
	$\begin{array}{r} (21)_{6}^{a,d} \\ \hline (21)_{6}^{a,d} \\ \hline 1.976(9) \\ 1.869(9) \\ 1.954(9) \\ 88.0(9) \\ 140.0(4) \\ 132.9(4) \\ 2.349(9) \\ 2.420(8), 2.53^{e} \end{array}$	$\begin{array}{c cccc} (21)_6^{a,d} & (22)_6^{b} \\ \hline & (21)_6^{a,d} & (22)_6^{b} \\ \hline & 1.976(9) & 1.955(5) \\ 1.869(9) & 1.877(5) \\ 1.954(9) & 1.923(5) \\ 88.0(9) & 105.3(2) \\ 140.0(4) & 130.8(2) \\ 132.9(4) & 132.4(2) \\ 2.349(9) & 2.687(5) \\ 2.420(8), 2.53^e & 2.443(5) \\ & 2.749(5) \\ \end{array}$

^{*a*} Reference 32. ^{*b*} Figure 5. ^{*c*} Reference 17d. ^{*d*} One of two similar asymmetric units in the unit cell with approximate S_6 symmetry. ^{*e*} Average value of the two asymmetric units.

cations and appears as a useful indicator for π -interactions, especially for the smaller cations (Figure 9).

The σ -effects of the cations give rise to increased ($C_{\beta} \rightarrow C_{\alpha}$) charge polarizations with smaller cation sizes in **1-Li-Cs** and in **25-Li-Cs** relative to **1** (see the C_{α} , C_{β} charges in Tables 5 and 6 and in Figure 10). The π -interactions in **26-Li** to **26-Cs** compensate for these counterion induced C_{α} , C_{β} charge separations and hence give rise to $C_{\alpha} \rightarrow C_{\beta}$ charge delocalizations relative to the corresponding **25-Li-Cs** structures. These cation induced charge delocalizations increase with decreasing cation sizes and hence with increasing degrees of the π -interactions (Table 6, Figure 10).

Conclusions

Intramolecular coordination of the o-anisyl methoxy groups in [Li-C=C-SiMe₂-C₆H₄-OMe]₆ (14)₆ eliminates external solvent effects and facilitates lithium π -interactions with the acetylide moieties (Li₁-C_{β} = 2.353(9) Å), as is evident in the X-ray crystal structure analysis of $(14)_6$. The strong tilt of the C=C-R fragments in $(14)_6$ gives rise to clearly different Li- C_{α} bond lengths in the (LiC_{α}) core (Li₁-C_{α} = 2.292(9) Å, Li_{1a}-C_{α} = 2.132(9) Å, Li_{1b}-C_{α} = 2.205(11) Å), due to "end-on- σ " and "side-on- π " coordinated acetylide moieties. Such distinct differences in Li– C_{α} bond distances are unprecedented in the X-ray crystal structures of hexameric organolithium compounds. Similar π -interactions are evident in the X-ray crystal structure of [Li-O-CMe₂-C≡C-H]₆ (22)₆ from short distances between the lithium ions in the (LiO)6 cluster and the nonmetalated acetylene moieties (Li₁-C₂ = 2.443(5) Å, Li₁-C₃ = 2.749(6) Å). Although the π -contacts are clearly evident structurally, the computational models for the X-ray crystal structures $(14)_6$, as well as $(22)_6$, H-C=C-Li(LiH)₂ (20), and Li-O-CH₂-C=C-H (24-H), point to the weak nature of these π -interactions (1.36 and 0.64 kcal/mol, respectively). Further computations

Figure 6. (a) Li–O–CH₂–C=C–H (*Cs* **24-H**) without Li (C=C) π -contacts: B3LYP/6-311+G** optimized geometry, total energy –198.888 99 au; B3LYP/6-31G* zero-point energy 31.91 kcal/mol (NIMAG = 0). (b) Li–O–CH₂–C=C–H (*Cs* **24-H-coord**) with Li (C=C) π -contact; B3LYP/6-311+G** optimized geometry, total energy –198.889 92 au; B3LYP/6-31G* zero-point energy 31.85 kcal/mol (NIMAG = 0); π -coordination energy relative to **24-H** = 0.64 kcal/mol. (c) Li–O–CH₂–C=C–Li (*Cs* **24-Li-coord**) with Li (C=C) π -contact: B3LYP/6-311+G** optimized geometry, total energy –205.829 44 au; B3LYP/6-31G* zero-point energy 26.40 kcal/mol (NIMAG = 0).

Scheme 6. The Li (C=C) π -Interaction Model for the X-Ray Crystal Structure (**22**)₆ (Figure 6)

Table 5. Bond Distances (Å),^{*a*} Harmonic Vibrational Frequencies ω (cm⁻¹),^{*b*} and Natural Charges *q* (aq)^{*c*} of Alkali Metal Acetylides M-C=C-H

	$M{-}C_{\alpha}$	$C_{\alpha} \equiv C_{\beta}$	<i>ω</i> -C≡C	$q \mathrm{M}$	$q C_{\alpha}$	$q \mathrm{C}_{\!eta}$	$q ~\mathrm{H}$
$\overline{1(D_{\infty h})}$	1.063	1.199	2062		-0.224	-0.224	+0.223
1-Li $(C_{\infty v})$	1.919	1.224	2014	+0.937	-0.746	-0.386	+0.195
1-Na $(C_{\infty v})$	2.222	1.225	2002	+0.909	-0.668	-0.436	+0.195
1-K $(C_{\infty v})$	2.666	1.229	1970	+0.950	-0.643	-0.493	+0.185
1-Rb $(C_{\infty v})$	2.848	1.230	1964	+0.948	-0.626	-0.506	+0.184
1-Cs $(C_{\infty v})$	3.057	1.231	1955	+0.961	-0.621	-0.521	+0.182
1-anion $(C_{\infty v})$		1.243	1882		-0.461	-0.694	+0.155

^{*a*} B3LYP/6-311+G** (C, H), 6-31G (Li, Na), LanL2DZ, ECP (K, Rb, Cs) optimized structures. ^{*b*} Unscaled B3LYP frequencies. ^{*c*} Natural Population Analysis of the B3LYP electron densities, ref 45.

show the π -interactions in alkali metal (HC=C)M₂H (**26-Li-Cs**) complexes to be weakly stabilizing (0.73 kcal/mol for Li) and to decrease with increasing cation sizes (0.07 kcal/mol for Cs). The π -contacts give rise to slightly increased C=C bond

lengths (up to 0.005 Å for Li), to lowered ω -C=C frequencies (up to 33 cm⁻¹ for Li) and to cation-induced charge delocalization, which increase with decreasing cation size (Cs to Li).

Experimental Section

The experiments were carried out under an argon atmosphere by using standard Schlenk as well as needle/septum techniques. The solvents were freshly distilled from sodium/benzophenone. Anisole and 2-methyl-3-butyn-1-ol (Aldrich) were distilled prior to use. Sodium acetylide as a toluene/mineral oil suspension and n-BuLi were purchased from Acros. A hexane solution of 6Li-enriched n-Bu6Li was prepared as described by Seebach et al.³⁸ The NMR spectra were measured on a JEOL GX spectrometer and referenced to TMS or THF: 1H, 400 MHz; 13C, 100.6 MHz; 29Si, 79.4 MHz; 6Li, 58.9 MHz. IR spectra were determined neat or as Nujol mulls between NaCl discs on a Perkin-Elmer 1420 spectrometer. Mass spectral data were obtained on a Varian MAT 311A spectrometer and the elemental analyses (C, H) on Heraeus micro automaton. The X-ray crystal data were collected with an Enraf Nonius CAD4-Mach3 diffractometer using the ω -scan method (3.0° $< 2\Theta < 54.0^{\circ}$). The structures were solved by direct methods using SHELXS 86. The parameters were refined with all data by full-matrix least-squares on F² using SHELXL93 (G. M. Sheldrick, Göttingen, 1993). All nonhydrogen atoms were refined anisotropically; the hydrogen atoms were fixed in idealized positions using a riding model. $RI = \sum |F_{o} - F_{c}| / \sum F_{o}$ and $wR2 = \sum w |(F_{o}2 - F_{c}2)^{2}| / \sum (w(F_{o}2)^{2})^{0.5}$. Further details are available on request from the Director of the Cambridge Crystallographic Data Center, Lensfield Rd, GB-Cambridge CB2 1 EW, by quoting the journal citation.

 $Li-C \equiv C-SiMe_2-C_6H_4-OMe$ (14). A solution of ca. 6.8 g (0.06 mol) o-lithioanisole in THF, TMEDA, and hexane was prepared from 37.5 mL (0.06 mol) of BuLi (1.6 M) in hexane, 7.0 g (0.06 mol) of TMEDA, 6.5 g (0.06 mol) of anisole and subsequent solvation of the precipitate with ca. 10 mL of THF.39 This solution was added dropwise at 0 °C to 7.7 g (0.06 mol) of dichlorodimethylsilane in 150 mL of diethyl ether. The resulting mixture was stirred at room temperature for 6 h and filtered; the volatile components were removed by distillation. The residue was taken up in 150 mL of diethyl ether and cooled to 0 °C; a suspension of 2.9 g (0.06 mol) of sodium acetylide in 20 mL of diethyl ether was added. The mixture was stirred for 6 h at room temperature. Hydrolysis with H2O/NH4Cl, extraction with diethyl ether, drying over Na₂SO₄, and distillation yielded (9.8 g, 52 mmol, 87%) o-anisyldimethylsilylacetylene, HC=C-SiMe₂-C₆H₄-**OMe**: bp 60 °C/1.6 mbar; ¹H NMR (CDCl₃) δ 7.69 (d, C₆H₄), 7.35 (t, C₆H₄), 6.97 (t, C₆H₄), 6.79 (t, C₆H₄), 3.76 (s, OCH₃), 2.49 (s, CCH), 0.44 (s, Si(CH₃)₂); ¹³C {¹H} NMR (CDCl₃) δ 165.14, 136.88, 132.40, 124.62, 121.53, 110.48 (C_6H_4), 95.30 (C_α), 89.80 (C_β), 55.92 (O- CH_3), 0.84 (Si(CH₃)₂); ²⁹Si {¹H} NMR (CDCl₃) δ -21.02; IR (neat, cm⁻¹) 3280 (v C≡C-H); 3070, 3002 (v C-H arene), 2960, 2900, 2840 (v C-H aliphatic), 2020 (ν C=C).

Lithiation of 0.28 g (1.5 mmol) of $HC \equiv C-SiMe_2-C_6H_4-OMe$ with 0.9 mL (1.5 mmol) of n-BuLi (1.6 M) in THF or hexane solution (-20 °C, then 5 min. RT) afforded Li- $C \equiv C-SiMe_2-C_6H_4-OMe$ (14) (0.27 g, 1.4 mmol, 93% yield in hexane): NMR⁴⁰ of ⁶Li-14 δ ¹H (THF- d_8 , +25 °C) 8.13 (d, C₆H₄), 7.24 (t, C₆H₄), 6.88 (t, C₆H₄), 6.77 (d, C₆H₄), 3.74 (s, OCH₃), 0.31 (s, Si(CH₃)₂); δ ¹³C{¹H} (THF- d_8 , -90 °C) 171.62 (pentuplet, C_α), 164.91 (C₆H₄-OMe), 138.65 (C₆H₄), 131.27 (C₆H₄), 127.04 (C₆H₄-SiMe₂), 120.25 (C₆H₄), 114.23 (s, C_β), 109.11 (C₆H₄), 55.00 (OCH₃), 0.97 (Si(CH₃)₂); δ ⁶Li (THF- d_8 , -95 °C) -0.26 (s); δ ²⁹Si {¹H} (THF- d_8 , 31 °C) -30.55; IR (Nujol, cm⁻¹) 3050 (ν C-H arene), 1980 (ν C≡C); MS (EI, 70 eV, 120 °C) *m/e* 354 [Me-O-C₆H₄-SiMe₂-C≡C-SiMe₂-C₆H₄-OMe]⁺, 339 [Me-O-C₆H₄-SiMe₂ C≡C-SiMe-C₆H₄-OMe]⁺, 309 [Me-O-C₆H₄-SiMe-C≡C-SiMe-C₆H₄-OMe]⁺, 309 [Me-O-C₆H₄-SiMe-C=C-SiMe-C₆H₄-OMe]⁺, 309 [Me-O-C₆H₄-SiMe-C=C-SiMe-C₆H₄-OMe]⁺, 309 [Me-O-C₆H₄-OMe]⁺, 279

⁽³⁸⁾ Seebach, D.; Hässig, R.; Gabriel, J. Helv. Chim. Acta 1983, 66, 308.

⁽³⁹⁾ Brandsma, L.; Verkruijsse, H. *Preparative Polar Organometallic Chemistry*; Springer: Berlin 1987.

⁽⁴⁰⁾ For NMR [⁶Li ¹³C] coupling studies on lithium acetylides see: (a) Fraenkel, G.; Pramanik, P. *J. Chem. Soc., Chem. Commun.* **1983**, 1527. (b) Hässig, R.; Seebach, D. *Hev. Chim. Acta* **1983**, *66*, 2269.

Table 6. Energies,^{*a*} Bond Distances (Å),^{*a*} Harmonic Vibrational Frequencies ω (cm⁻¹),^{*b*} and Natural Charges q (au)^{*c*} of (HC=C)M₂H Complexes without ($C_{2\nu}$) and with (C_s) π -Interactions

	E, ZPE (NIMAG) ^{d}	ΔE^{e}	$M_1 - C_{\alpha}$	M_{1a} - C_{α}	$M-C_{\beta}$	$C_{\alpha} \equiv C_{\beta}$	ω-C≡C	$q \mathbf{M}^{f}$	$q C_{\alpha}$	$q~\mathrm{C}_eta$	$q \mathrm{H}$
25-Li (C _{2v})	-92.445 65, 15.79 (0)		2.091	2.091	3.183	1.225	2007	+0.873	-0.775	-0.337	+0.204
26-Li (C_s)	-92.446 81, 15.79 (0)	0.73	2.126	2.051	2.446	1.230	1974	+0.874	-0.652	-0.478	+0.213
25-Na (C_{2v})	-401.966 01, 14.03 (1, -79)		2.415	2.415	3.484	1.227	1983	+0.878	-0.703	-0.409	+0.199
26-Na (C_s)	-401.967 15, 14.10 (0)	0.65	2.428	2.389	2.929	1.230	1968	+0.879	-0.642	-0.477	+0.202
25-K (C_{2v})	-133.658 25, 12.95 (1, -44)		2.834	2.834	3.860	1.231	1956	+0.923	-0.658	-0.487	+0.192
26-K (C_s)	-133.658 69, 13.02 (0)	0.21	2.838	2.836	3.416	1.233	1950	+0.923	-0.621	-0.523	+0.193
25-Rb (C_{2v})	-125.102 71, 12.60 (1, -45)		3.025	3.005	4.035	1.232	1948	+0.924	-0.637	-0.508	+0.190
26-Rb (C_s)	-125.103 08, 12.67 (0)	0.16	3.031	3.033	3.595	1.232	1942	+0.923	-0.607	-0.537	+0.191
25-Cs (C_{2v})	-117.125 51, 12.35 (1, -41)		3.229	3.229	4.217	1.234	1941	+0.937	-0.626	-0.529	+0.188
26-Cs (C_s)	-117.125 74, 12.42 (0)	0.07	3.232	3.243	3.835	1.234	1937	+0.936	-0.605	-0.549	+0.188

^{*a*} B3LYP/6-311+G** (C, H), 6-31G (Li, Na), LanL2DZ, ECP (K, Rb, Cs) optimized structures. ^{*b*} Unscaled B3LYP frequencies. ^{*c*} Natural Population Analysis of the B3LYP electron densities, ref 45. ^{*d*} Total energies *E* (au), unscaled zero-point energies ZPE (kcal/mol), numbers and values (cm⁻¹) of imaginary frequencies in parentheses. ^{*e*} Relative $C_s - C_{2v}$ energies ΔE (kcal/mol). ^{*f*} Average value for M₁ and M_{1a}.

Table 7. The π - Coordination Energies E_{coord} (kcal/mol),^{*a*} Bond Distances (Å),^{*a*} Harmonic Vibrational Frequencies ω (cm⁻¹),^{*b*} and Natural Charges q (au)^{*c*} of the Alkali Cation Acetylene Complexes M⁺(H–C=C–H)

	$E_{ m coord}$	$M^+ \pi - (C \equiv C)^d$	$C_{\alpha} \equiv C_{\beta}$	ω−C≡C	$q \mathrm{M}$	<i>q</i> C	$q~{ m H}$
$1(D_{\infty h})$			1.199	2062		-0.223	+0.223
27-Li (C_{2v})	20.22	2.254	1.205	2034	+0.978	-0.261	+0.272
27-Na (C_{2v})	13.29	2.633	1.204	2039	+0.986	-0.252	+0.259
27-K $(C_{2\nu})$	7.50	3.152	1.202	2048	+0.997	-0.245	+0.246
27-Rb $(C_{2\nu})$	5.73	3.454	1.201	2051	+0.998	-0.241	+0.242
27-Cs (C_{2v})	4.53	3.739	1.201	2053	+0.999	-0.238	+0.239

^{*a*} B3LYP/6-311+G** (C, H), 6-31G (Li, Na), LanL2DZ, ECP (K, Rb, Cs) optimized structures. ^{*b*} Unscaled B3LYP frequencies. ^{*c*} Natural Population Analysis of the B3LYP electron densities, ref 45. ^{*d*} Distance between the metal and the center of the C=C bond.

Figure 7. The $1/r^3$ dependence of the coordination energy E_{coord} in M^+ (H–C=C–H) complexes (**27-Li-Cs**).

Figure 8. The C=C distances of the alkali metal acetylene compounds.

 $[Me-O-C_6H_4-Si-C=C-Si-C_6H_4-O]^+$. Anal. $(C_{11}H_{13}O_1Li_1Si_1)$. Calcd: C, 67.3; H, 6.6. Found: C, 66.8; H, 6.8. Single crystals of **14** were obtained from cooled hexane solutions.

X-ray crystal data for (14)₆: $M_r = 196.24$; rhombohedric; space group R-3; a = b = 22.577(3) Å, c = 12.774(2) Å; V = 5638.8(14)Å³; $D_{calc} = 1.040$ Mgm⁻³; Z = 18; F(000) = 1872; Mo K α ($\lambda =$

Figure 10. The natural charges on C_{α} and C_{β} in the alkali metal acetylides.

0.71073 Å); T = 293 (2) K; crystal dimensions: $0.30 \times 0.20 \times 0.20$ mm; total reflections 2137; unique 1966; $I > 2\sigma(I)$, 1009; parameters, 128. Final *R* values: R1 = 0.0917 ($I > 2\sigma(I)$) and wR2 = 0.1759 (all data). GOF = 1.148; largest peak (0.171 e Å⁻³) and hole (-0.150 e Å⁻³).

 $Li-O-CMe_2-C \equiv C-H$ (22). A solution of 0.223 g (2.66 mmol) of 2-methyl-3-butyn-2-ol (H-C $\equiv C-CMe_2-OH$) in 10 mL of hexane

was cooled to 0 °C and 1.66 mL (2.66 mmol) of 1.6 M BuLi in hexane were added. The white suspension (isolated: 0.23 g, 2.56 mmol, 96% yield), stirred at room temperature for 5 min, dissolved on warming. Slowly cooling to room temperature afforded colorless crystals. NMR of **22**: δ ¹H (CDCl₃, +25 °C) 2.35 (s, *H*-C=C), 1.44 (s, *CH*₃); δ ¹³C{¹H} (CDCl₃, +25 °C) 94.57 (C₁), 67.67 (C₃), 64.51 (C₂), 35.06 (*CH*₃); IR (Nujol, cm⁻¹) 3270 (ν C-H); MS (EI, 70 eV, 80 °C) *m/e* 457 [M₅-Li⁺], 399 [457⁺ - COMe₂], 341 [399⁺ - COMe₂]. Anal. (C₅H₇Li₁O₁). Calcd: C, 66.7; H, 7.8. Found: C, 66.4; H, 7.9. Single crystals of **22** were obtained from cooled hexane solutions.

X-ray crystal data for (22)₆: $M_r = 90.05$; rhombohedral, obv.; space group R-3; a = b = 10.767(2) Å, c = 26.933(3) Å, V = 2704.0(9) Å³; $D_{calc} = 0.995$ Mgm⁻³; Z = 18; F(000) = 864; Mo K α ($\lambda = 0.71073$ Å); T = 293 (2) K; crystal dimensions: $0.30 \times 0.30 \times 0.20$ mm; total reflections 1438; unique 1234; $I > 2\sigma(I)$, 700. H₃ was refined independently and anisotropically; the other hydrogen atoms were fixed in idealized positions using a riding model. Final *R* values: R1 =0.0781 ($I > 2\sigma(I)$) and wR2 = 0.1882 (all data). GOF = 1.185; largest peak (0.192 e Å⁻³) and hole (-0.155 e Å⁻³).

Theoretical Section

All computed structures were optimized with Becke's threeparameter hybrid functional⁴¹ incorporating the Lee-Yang-Parr correlation functional⁴² (Becke3LYP) using the gradient techniques implemented in GAUSSIAN94.⁴³ The 6-311+G** (C, H, Li) and 6-31G (Li, Na) basis sets were used. For K, Rb, and Cs 9-valence electron effective core potentials and the LanL2DZ basis sets [K, (341/ 311); Rb, (341/321); Cs, (341/321)] were employed.⁴⁴ The character of the stationary points, the zero-point energy correction, and the harmonic vibration frequencies were obtained from analytical and, for pseudo-potential computations of the K, Rb, and Cs systems, from numerical frequency calculations. All partial charges are based on Natural Population Analysis (NPA)⁴⁵ of the Becke3LYP electron density. The electrostatic potentials were evaluated with RHF/6-31+G* wave functions on optimized B3LYP geometries.

Acknowledgment. This work was supported by the Fonds der Chemischen Industrie (also through a scholarship to B.G.), the Stiftung Volkswagenwerk, the Convex Computer Corporation, and the Deutsche Forschungsgemeinschaft.

Supporting Information Available: Tables giving crystal data and structure refinement details, atomic coordinates, bond distances and angles, and thermal parameters for **14** and **22** (12 pages). See any current masthead page for ordering and Internet access instructions.

JA9622517

(44) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.

(45) (a) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
(b) Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 1434.

(46) Goubeau, J.; Breuer, O. Z. Anorg. Allg. Chem. 1961, 310, 110.

⁽⁴¹⁾ Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

⁽⁴²⁾ Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

⁽⁴³⁾ GAUSSIAN94, Revision C.3: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Pittsburgh, PA, 1995.